#INNOVATION
Cette formation explore comment l’Intelligence Artificielle Générative (IAG) a un fort impact le rôle des Chefs de Projets, Architectes, Analystes et Développeurs. Les participants apprendront comment intégrer ces avancées pour améliorer leurs opérations et leurs performances.
Modalités possibles :
Inter-Entreprise,
Présentiel ou Distanciel
À qui s’adresse
cette formation ?
Public
Ce séminaire s’adresse à tous les professionnels du domaine des chefs de projets et des développeurs, scrum master, product owner qu’ils soient en AMOA, AMOE, MOE, business analyse, BRM, programmation, tests, etc.
Prérequis
Objectifs Pédagogiques
– Comprendre les Fondamentaux de l’IAG dans le domaine de l’Informatique et du Développement.
– Optimiser l’Interaction avec les Logiciels et les Systèmes grâce à l’IAG.
– Maîtriser les Outils IAG pour un Développement Efficace.
– Utiliser l’IAG comme Moteur d’Innovation pour la Conception et la Mise en Œuvre des Applications
– Exploiter la Visualisation des Données de Projet avec l’IAG.
– Automatiser les Processus de Développement grâce à l’IAG.
– Promouvoir la Gestion Collaborative et l’Automatisation en Informatique grâce à l’IAG.
Contenu de la formation
Introduction à l'IAG
- Découverte de l’IAG : Définition, origines et implications pour l’informatique et le développement
- Histoire de l’IAG : Origines et implications pour l’informatique et le développement
- Présentation du cycle de vie du logiciel : de l’expression de besoin au décommissionnement
Technologies et applications de l’IAG
- L’IA, le machine learning et le deep learning
- L’IA côté deep learning : Principe de fonctionnement
- En quoi consiste la reconnaissance d’image ?
- En quoi consiste la reconnaissance vocale ?
Le cycle de vie du logiciel
- Présentation du cycle de vie du logiciel
- Étude du cycle de vie du logiciel de l’expression du besoin jusqu’au décommissionnement
- Cas d’intégration de l’IAG dans le cycle de vie du logiciel
Outils IAG pour la gestion de projet
- L’IAG pour la coordination d’équipe et l’automatisation des tâches récurrentes
- Organiser et structurer les besoins avec des outils comme Chatmind
- Notion, Fireflies.ai : Outils clé pour la gestion collaborative de projets
- Génération automatique de dashboards pour le suivi de sprints
Outils IAG pour la rédaction de spécifications
- Utilisation d’outils comme Articoolo
- Cas concret : Exemple de rétroingénierie avec un LLM pour la rédaction de spécifications
Outils IAG pour la production de code
- Présentation de Copilot et Codepal
- Cas d’application des outils de production de code
- Ecriture de code, obtention de commentaires et refactoring
- Détour par les alternatives open-source comme LLaMA 2 et LLaMA code
Outils IAG pour le test applicatif
- L’exemple Selenium Headspin
- Etude sur la longueur de contexte d’un LLM
- Cas pratique : Utilisation d’un LLM pour rédiger un cahier de recettes
- Cas pratique : Utilisation d’un LLM pour rédiger des tests automatiques
Outils IAG pour l’UX design
- Présentation d’un éventail de modèles IAG pour la génération et le traitement d’image
- Utilisation de modèles génératifs pour créer des supports visuels
- Cas pratique : Création d’un site web à partir d’un croquis manuel
Travaux pratiques
- Exemples d’intégration de l’IAG par des cas pratiques pour chaque étape du cycle de vie du logiciel …
- L’IAG pour l’amélioration des méthodes agiles
- Reverse engineering du code
Outils IAG pour le développement d’IA/IAG
- Utilisation de Scikit-Learn, Keras et PyTorch dans le développement d’applications IA
- Utilisation de librairies d’entrainement comme Accelerate ou Transformers pour créer sa propre IA
- Cas pratique : Entrainement d’un LLM sur des données de service client
- Outils MLOps comme MLflow, Weights & Biases ou Tensorboard
MetaGPT, transformer vos équipes en profondeur
- Découverte du principe d’agent autonome : le cas AutoGPT
- MultiGPT : Agents autonomes gérés par un orchestrateur
- MetaGPT : L’IA entreprise tout en un
- MetaGPT : Exemple du web scraper
Conclusion et perspectives pour l’IAG dans l’entreprise
- Synthèse des méthodes abordées durant le séminaire
- Perspectives sur l’entreprise augmentée par la machine
- La répartition des tâches Homme / Machine
- Perspectives pour l’IAG
- IAG : Notes d’ordre général et conseils
- Comment continuer à se former et à progresser dans ce domaine novateur
Méthodologie pédagogique
Méthodologie d’évaluation
Formateur
Sébastien Méric
Sébastien Meric, expert en poste de travail numérique et fondateur de Holoffice, apporte une perspective novatrice à la collaboration à distance. Fort de plus de 4 ans à la tête de Holoffice, Sébastien se consacre à maintenir la cohésion au sein d’équipes full-remote et hybrides. Son expérience en tant que directeur de l’innovation et DSI chez Tinubu, où il a dirigé l’innovation et la transformation organisationnelle, témoigne de son engagement à humaniser les interactions professionnelles. Ingénieur en mathématiques discrètes, Sébastien incarne la convergence entre technologie et intelligence collective.
Formateur
Dr. Georges Bressange
Docteur en Mathématiques, auparavant enseignant-chercheur en tant que spécialiste dans la modélisation mathématique de phénomènes complexes et la mise en place de simulations numériques. Aujourd’hui, Data Scientist consultant expert, Georges a dirigé de nombreuses missions dans les domaines de la Data Science, de l’IA et du Big Data, en particulier dans les domaines de l’assurance, des mutuelles, de la santé et de l’énergie. Georges est notamment le concepteur de l’IA Navigator qui permet de rechercher, traiter et visualiser tout type d’informations et connaissances de formes variées (texte, voix, image, vidéo) et de provenances linguistiques diverses.